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Primary CD8+ T cells from elite suppressors
effectively eliminate non-productively HIV-1
infected resting and activated CD4+ T cells
Robert W Buckheit III1, Robert F Siliciano1,2 and Joel N Blankson1*
Abstract

Background: Elite controllers or suppressors have the remarkable capacity to maintain HIV-1 plasma RNA levels
below the limit of detection of clinical assays (<50 copies/mL) without therapy and have a lower frequency of
latently infected cells compared to chronic progressors. While it is unclear how this reduced seeding of the
reservoir is achieved, it is possible that effective CTL responses play an in important role in limiting the size of the
latent reservoir.

Results: Herein, we demonstrate that primary CD8+ T cells from HLA-B*57/5801 elite suppressors were able to
efficiently eliminate resting and activated primary CD4+ T cells shortly after viral entry and prior to productive
infection. CD8+ T cells from elite suppressors were significantly more effective at eliminating these cells than CD8+ T
cells from chronic progressors.

Conclusions: Nonproductively infected CD4+ T cells may represent a subpopulation of cells that are precursors to
latently infected cells; therefore, the effective elimination of these cells may partially explain why elite suppressors have a
much lower frequency of latently infected cells compared to chronic progressors. Thus, a vaccine strategy that elicits early
and potent CD8+ T cell responses may have the capacity to limit the seeding of the latent reservoir in HIV-1 infection.
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Background
The development of a successful HIV-1 vaccine is
paramount in combating the HIV-1 pandemic. In most
patients, HIV-1 infection is characterized by high viral load
and progressive CD4+ T cell decline. In these patients,
known as chronic progressors (CP), AIDS develops in
an average of ten years in the absence of antiretroviral
therapy. Elite controllers or suppressors (ES) are remarkable
HIV-1-infected individuals who restrict viral replication to
below the limit of detection of standard clinical assays
(<50 of HIV-1 RNA copies/mL of plasma) and represent
less than one percent of the HIV-1 infected population
[1,2]. The mechanism of this control is still unclear. A
better understanding of the mechanisms involved in this
control could be useful in defining the characteristics of
an effective HIV-1 vaccine.
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A qualitatively superior CD8+ T cell response has been
most closely associated with control of viral replication.
HLA-B*57 is over represented in ES cohorts [3-9] and was
identified as a major determinant of control in multiple
genome wide association studies [10-15]. Additionally, the
maintenance of a polyfunctional HIV-1-specific CD8+ T
cell response [16-18], as well as elevated proliferation and
lytic granule loading have each been implicated in control
of viral replication [3,19,20]. Unstimulated CD8+ T cell
from ES have also been shown suppress viral replication
more effectively compared to than CP CD8+ T cells
[21,22]. Most convincingly, studies in the macaque model
of elite suppression have shown that depletion of CD8+ T
cells with monoclonal antibodies results in a loss of viral
control [23,24].
While maintaining similar levels of circulating viremia as

antiretroviral treated patients [3,25-27], ES have a reduced
number of latently infected cells compared to CP [5,28-30].
A sensitive co-culture assay [31] was used to show that
the frequency of latently infected cells in the blood of ES
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was 10 to 50 fold lower than the frequency observed for
CPs who were on suppressive HAART regimens [29].
Additionally, ES have significantly lower levels of integrated
proviral DNA compared to CP [28]. The lower levels of
peak viremia during acute infection [32,33] that have
been observed in some ES may partially explain the low
frequency of latently infected cells in these patients.
However, other mechanisms may contribute to this
phenomenon. In a primary model system of latency,
CD8+ T cells from ES were observed to be more effective
at targeting reactivated latently infected cell than CD8+ T
cells from individuals on suppressive HAART regimens
[34]. Additionally, in a recent study in the SIV macaque
model, a CMV based vaccine strategy was shown to
provide impressive control of SIV replication in a subset
of vaccinated animals. Interestingly, this control of viral
replication was not abrogated when CD8+ T cell were
depleted using antibodies, and very few SIV infected CD4+

T cells were seen at necropsy, suggesting that complete
clearance of virus may have been achieved [35].
We hypothesized that ES CD8+ T cells might be capable

of eliminating infected CD4+ T cells that are precursors of
latently infected cells. Latency may be established when
infected CD4+ T lymphoblasts revert back to a resting
state that is non-permissive for viral gene expression [36]
or through direct infection of resting CD4+ T cells [37]. In
either case, the elimination of CD4+ T cells immediately
after infection and before any viral genes are expressed
should help prevent the establishment of latency. This
targeting of non-productively infected cells early after viral
infection by CD8+ T cell clones and cell lines has been
documented in HIV and SIV infection models [38-40]
however, it is unclear whether primary CD8+ T cells from
ES can mediate this type of response.
In this study, we use a CD8+ T cell elimination assay

with unstimulated, autologous CD4+ T cell targets to
demonstrate that CD8+ T cells from HLA-B*57+ ES are
able to eliminate non-productively infected resting and
activated CD4+ T cells. This response was significantly
superior to the response observed in both HLA-B*57/
5801+ and HLA-B*57/5801- CPs. Therefore, a potent
CD8+ T cell response that targets non-productively
infected cells in ES could contribute to the control of
viral replication and may partially explain the reduced
frequency of latently infected CD4+ T cells.

Results and discussion
To measure infection immediately after spinoculation,
we infected CD4+ T cells and stained with an antibody
against the Gag p24 antigen. This allowed for detection
of Gag stained cells shortly after infection, whereas GFP
can only be reliably detected two to three days after
infection. To observe the kinetics of infection, we analyzed
infection in 3 healthy donors. We spinoculated primary
CD4+ T cells with both an X4 and R5 pseudotyped virus,
and treated the cells with an antibody specific for the CD4
receptor, 1.2 μM maraviroc (MVC), 25 nM ADM3100
(ADM) or 10 μM T20 during spinoculation. Gag staining
was then performed immediately after spinoculation (hour
0). The CD4 antibody should block both X4 and R5
viruses from binding the primary receptor CD4, whereas
MVC and ADC are specific antagonist of CCR5 and
CXCR4 and should inhibit the infection of R5 and X4
viruses, respectively. Treatment with anti-CD4 antibody
reduced infection at 0 hours post infection in for both R5
and X4 pseudotype viruses. MVC treatment specifically
inhibited R5 virus infection (Figure 1A), whereas ADM
specifically inhibited X4 virus infection (Figure 1B). Thus,
the high level of Gag positivity seen immediately after
spinoculation is mediated by virus binding that is CD4
and co-receptor specific. We also treated CD4+ T cells
with T20 during spinoculation and observed a reduction
in the level of Gag positivity suggesting that viral fusion
and entry occurs during this process (Figure 1A, B). How-
ever, this was an incomplete block suggesting that some of
the Gag positivity observed immediately after spinoculation
could represent virus that has bound the cell surface, but
has yet to fuse with and enter the cell.
To characterize the kinetics of infection for the X4

pseudotype virus, we observed infection at 0, 6, and
18 hours post spinoculation. Infection remained relatively
constant from hour 0 to hour 18, and T20, CD4, and
ADC treatment maintained a reduction in the level of
infection (Figure 1C). Additionally, spinoculation with X4
virus was performed at 4° Celsius and 25° Celsius and little
Gag positivity was observed by FACS analysis at the lower
temperature (Figure 1D). Thus, spinoculation is resulting
in a high level of interaction between virion and target
cells that is CD4 and co-receptor specific, and largely
requires fusion of the bound virion. To determine if the
ES CD8+ T cell response to non-productively infected
CD4+ T cells is superior to the response of CP CD8+ T
cells, a variant of the CD8+ T cell suppression assay was
used [21,22,41]. Freshly isolated, unstimulated CD4+ T
cells were infected with 1000 ng of NL4-3 ΔEnv/GFP per
106 cells with or without treatment with 10 μM EFV, and
co-cultured with either Gag-stimulated or unstimulated
CD8+ T cells at E:T ratios ranging from 1:1 to 1:8. CD8+ T
cell effectors were added to the culture immediately after
infection. The percent of cells with intracellular Gag was
determined at 6, 18, and 72 hours after infection to
measure the kinetics of the CD8+ T cell response.
The HLA-B*57 and HLA-B*5801 alleles are over-

represented in ES cohorts cohorts [3-9], and HLA-B*57
is the major genetic determinant of control of HIV-1
replication as identified in multiple genome wide associ-
ation studies [10-14]. Additionally, HLA-B*57 is thought
to present peptides from structurally conserved regions
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Figure 1 Early Gag positivity in spinoculated cells is CD4 and co-receptor dependant. CD4+ T cells were either untreated or treated with
anti-CD4 antibody, MVC, ADM, or T20 for the duration of spinoculation. Percent Gag+ cells were analyzed immediately after spinoculation with R5
(A) or X4 (B) pseuotype virus. (C) X4 virus infection was analyzed at 0, 6 and 18 hours post spinoculation after treatment with anti-CD4 antibody,
MVC, ADM, or T20 for the duration of the culture period. (D) Comparision of the percent infection 24 hours after spinoculation with and without
T20 treatment (n=3). Standard error of the mean are indicated by black bars.
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of Gag, and mutations in these Gag epitopes have been
associated with viral attenuation [42,43]. Therefore, we
asked whether CD8+ T cells from HLA-B*57/5801+ ES
were able to target proteins from the incoming virion,
prior to the productive infection of target CD4+ T cells.
Four experimental groups were analyzed: HLA-B*57+/
HLA-B*5801+ ES (n=10), HLA-B*57/5801+ CP (n=9),
HLA-B*57/5801- CP (n=8) and healthy donors (HD)
(n=6). Because the HLA-B*57/5801+ alleles are thought
to present structurally conserved regions in Gag, we
analyzed both HLA-B*57/5801+ CP and HLA-B*57/
5801- CP to determine if there was a difference in the
kinetics of the immune response if Gag was specifically
targeted.
Figure 2A shows representative FACS plots to illustrate

the gating scheme. HIV-1 infection results in Nef-mediated
CD4 downregulation [44]; therefore, target CD4+ T cells
were designated as CD3+/CD8- and then assayed for the
expression of Gag (Figure 2A). The percent elimination
was normalized based on the positive control values
observed in absence of CD8+ effector cells. Gag staining
can be reliably detected early after spinoculation, and prior
to the detection of GFP expression, which requires de
novo synthesis of proteins encoded on the viral genome.
Similar levels of Gag positivity were detected between the
ES (49.1% mean Gag positivity) and both CP groups
(51.2% and 52.1 mean Gag positivity for B*57/5801+ CP
and B*57/5801- CP, respectively, data not shown). After
6 hours of co-culture, there were no significant differences
between the experimental groups in the levels of elimin-
ation at any E:T ratio analyzed (Figure 2B). An increased
level of elimination was observed for all experimental
groups after 18 hours of infection. The levels of elimin-
ation mediated by Gag-peptide stimulated CD8+ T cells
from ES was highest at a 1:1 E:T ratio for both EFV-
treated and untreated cells, but did not reach statistical
significance between these treatment groups. There was
no difference in the level of elimination observed for
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Figure 2 Elimination of non-productively infected CD4+ cells. (A) Representative FACS plots demonstrating the gating scheme employed for the
calculation of normalized percent elimination. Cells in culture were stained with anti-CD3 and anti-CD8 antibodies to distinguish targets (CD3+/CD8-)
and effector (CD3+/CD8+) populations. Target cells were then gated to determine the percent of gag positive cells, as determined by intracellular
staining with an anti-Gag antibody. Uninfected target cells were used as a negative control. (B) An elimination assay was performed to determine the
ability of CD8 T cells from B*57/5801+ ES (n=10; blue squares), B*57/5801+CP (n=9; orange squares), B*57/5801- CP (n=8; red squares) and healthy
donors (HD, n=6; purple squares) to reduce the frequency of Gag positive target cells. Unstimulated CD8+ T cells or Gag Stimulated CD8+ T cells were
co-cultured with untreated or EFV treated, autologous CD4+ T cell targets at various effector to target ratios. Elimination was analyzed after 6, 18 and
72 hours post infection. Data points where the level of elimination mediated by the ES CD8 T cells was significantly higher than all other experimental
groups are indicated (black asterisks, p<.05). (C) The normalized percent elimination for ES Gag-stimulated and unstimulated effectors, for both
untreated and 10 μM EFV treated were analyzed at 72 hours post infection for a 1:1 and 1:8 effector to target ratio. For all treatment groups, no
statistical difference in the levels of elimination was observed. Median elimination levels are indicated.
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untreated or EFV-treated CD4+ Tcell targets. After 72 hours
of infection, there was significantly more elimination by
ES CD8+ T cells compared to CD8+ T cells from CP or
HD. This increased elimination was observed for both
unstimulated and Gag-stimulated CD8+ T cells and was
similar when either EFV-treated or untreated CD4+ targets
were used (Figure 2B). Gag peptide stimulation did not
dramatically increase the elimination mediated by CD8+ T
cells from either HLA-B*57/5801+ CP or HLA-B*57/5801-
CP when compared to unstimulated CD8+ T cell effectors.
This may be due to the fact that CD8+ T cells from CP
undergo limited proliferation [19] and lytic granule loading
[3] after stimulation with HIV peptides. No GFP expression
was observed for any EFV-treated sample during the first
72 hours after infection (data not shown).
We next asked whether the levels of elimination of

non-productively infected cells was less than the elimin-
ation of productively infected CD4+ T cells. Infection of
CD4+ T cells in the presence of 10 μM EFV inhibits viral
reverse transcription, and results in non-productively
infected cells. For the ES group, the level of elimination of
untreated or EFV-treated cells mediated by Gag-stimulated
or unstimulated CD8+ T cells was analyzed 72 hours after
infection at a 1:1 E:T ratio and a 1:8 E:T ratio (Figure 1C).
No statistically significant difference between the levels of
elimination of EFV-treated or untreated CD4+ T cell targets
was observed for either Gag-stimulated or unstimulated
CD8+ T cells.
We confirmed this elimination of non-productively

infected CD4+ T cells by infecting CD4+ T cells with virus
inactivated by treatment with 300 μM aldirithiol-2 (AT-2).
This agent has been shown to modify the essential zinc
finger domains of HIV-1 nucleocapsid, thus, completely
inactivate the virus while maintaining the structure of
surface proteins. This allows the virus to enter target cells
but does not allow the virus to replicate [45]. We confirmed
this by demonstrating the presence of cell-associated Gag
protein but not GFP expression after infection (data not
shown). ES CD8+ T cells effectively eliminated CD4+ T
cells infected with AT-2 treated virus, confirming the fact
that these CTL can eliminated non-productively infected
CD4+ T cells (Figure 3).
To determine how the amount of input virus affects
elimination, we varied the input virus from 1000 ng p24
to 62.5 ng p24 per 106 CD4+ T cells by two fold dilutions.
We assayed the normalized percent elimination by un-
stimulated CD8+ T cells from 6 ES at a 1:1 E:T ratio after
72 hours after infection. This assay was performed on
EFV-treated and untreated CD4+ T cell targets. Represen-
tative FACS plots showing the gating strategy and the
percentage of infected cells over the titration range are
shown in Figure 4A. There was no statistical difference in
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the level of Gag present in CD4+ T cell targets with or
without EFV treatment. These results confirm that at all
the virus input levels tested, the observed Gag-staining
does not depend on completion of reverse transcription
and likely reflects cell-associated Gag proteins on incoming
virus particles bound to or internalized by target cells. The
average percent Gag positivity ranged from 65.8 percent
to 7.2 percent (Figure 4B, top panel). The normalized
percent elimination observed for untreated and EFV-treated
CD4+ targets remained constant over a range of inoculum
sizes (Figure 4B, bottom panel). For the untreated cells, the
only significant difference in the level of elimination was
between the 1000 ng p24 and the 62.5 ng p24 inoculum
size (Figure 4B, blue asterisk). In this instance, significantly
higher elimination was observed for the lower inoculum
size. For EFV treated targets, there were no statistically
significant differences in the level of elimination observed
at any viral inoculum size. The level of elimination observed
at the 1000, 500, and 250 ng p24 inoculum sizes was not
statistically different between the untreated and EFV treated
targets. However, there was a significant difference between
the elimination observed for the two lowest doses of input
virus between the treated and untreated CD4+ T cell targets
(Figure 4B, black asterisks), indicating that recognition of
viral infection at lower inoculum sizes might be more
dependent on endogenously produced viral proteins. These
data indicate that the level of elimination of infected cells
is only weakly dependent on the viral inoculum size.
We next asked whether CD8+ T cells from ES could

eliminate both activated and resting target cells. Therefore,
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72 hours after infection during analysis, we stained CD4+

target cells from ES with a cocktail of anti-HLA-DR,
anti-CD25, and anti-CD69 antibodies in addition to
anti-CD3 and anti-CD8 antibodies used to distinguish
targets and effectors. Cells that were positive for one or
more of these activation markers were considered to be
activated CD4+ T cells, and those that were negative for
all three of these markers were considered to be resting
CD4+ T cells. There were no significant differences in
the levels of resting and activated CD4+ T cells that were
productively (GFP+) and non-productively (Gag+ GFP-)
infected (Additional file 1). The non-productive infection
of resting CD4+ T cells is consistent with a prior study that
showed fusion of X4 pseudotyped virus to unstimulated
CD4+ T cells [46]. The GFP expressing resting CD4+ T
cells may represent cells that were recently activated but
no longer express classical activation markers. This was
not seen in a prior study when resting CD4+ T cells were
purified prior to infection [47], thus it is possible that
cytokines secreted by activated CD4+ T cells in the
unfractionated collection of cells may have facilitated the
0

20

40

60

80

100

1:
0

20

40

60

80

100

1:1 1:2 1:4 1:8

N
or

m
al

iz
ed

 P
er

ce
nt

 E
lim

in
at

io
n

0

20

40

60

80

1:1 1:2 1:4 1:8
0

20

40

60

80

1

No EFV Treatment
(n=7)

No EFV Treatment
(n=5)

ES: 18 Hours Post Inf

ES: 72 Hours Post Inf

Figure 5 Equal elimination of resting and activated CD4+ T cells. In a
assay were also stained with anti-HLA-DR, anti-CD25, and anti-CD69 antibodie
activated CD4+ cell populations. The level of elimination of untreated and EFV
unfractionated (all CD3+/CD8- targets; orange circles) target cells was calculat
(top panels) and 72 hours (bottom panels) after infection. No statistically signi
populations were observed.
productive infection of resting CD4+ T cells. We asked
whether CD8+ T cells from ES could eliminate both of
these cells types after 18 and 72 hours after infection, both
with and without treatment with EFV. We also calculated
the percent elimination of infected cells for unfractionated
CD4+ targets (defined as all CD3+/CD8- cells within the
experimental well). Similar levels of elimination of both
resting and activated infected CD4+ T cells were observed
over a range of E:T ratios (Figure 5B). At both 18 and
72 hours after infection, there was no statistical difference
between the levels of elimination of activated and resting
infected CD4+ T cells, and no difference when compared
to unfractionated CD4+ T cell targets. Additionally, there
was no difference in the level of elimination of infected
cells observed when cells were treated or not treated with
10 μM EFV.
Studies have shown that ES CD4+ T cells have lower

levels of total [5,48] and integrated [28] HIV DNA, and
replication-competent HIV-1 [29] compared to patients
on suppressive HAART regimens. It is possible that pre-
cursors of latently infected cells are cells that were
1 1:2 1:4 1:8

:1 1:2 1:4 1:8

EFV Treatment
(n=5)

EFV Treatment
(n=7)

ection

ection

Unfractionated CD4
Resting CD4
Activated CD4

Unfractionated CD4
Resting CD4
Activated CD4

subset of our ES cohort, target CD4+ T cells analyzed in the suppression
s and gated using the FACSDiva software to delineate resting and
treated resting (blue diamonds), activated (red squares), and

ed at various effector to target ratios. This analysis was performed at 18
ficant differences in the levels of elimination between each of the



Buckheit et al. Retrovirology 2013, 10:68 Page 8 of 12
http://www.retrovirology.com/content/10/1/68
infected as they were transitioning from activated to a
resting state, resulting in a non-productively infected
cell. Therefore, if ES CD8+ T were able to effectively
target non-productively infected cells through proteins
from incoming virions, they would be able to reduce the
seeding of the latent reservoir. By treating infected CD4+ T
cells with EFV, and by infecting cells with AT-2 inactivated
virus, we were able to produce non-productively infected
cells. We were able to demonstrate equal elimination of
infected cells between EFV treated and untreated cells and
effective elimination of CD4+ T cells infected with AT-2
inactivated virus. This elimination of infected cells was
relatively constant over a wide range of viral inoculum
sizes, implying that in some instances, proteins from the
infecting virion are sufficient to induce a CD8+ T cells
response without additional viral replication. While levels of
virus used in this study may be in excess of levels typically
observed in peripheral blood, local concentrations of virus
in the tissue and lymph nodes could be similar depending
on the HIV-1 burst size as previously hypothesized [38].
While a recent study suggested that HIV-1-specific

CD8+ T cell lines that recognized HLA-B*57 restricted
epitopes were capable of eliminating non-productively
CD4+ T cells [39], we show here that non-stimulated
primary CD8+ T cells from HLA-B*57/5801 ES were
significantly more effective at the elimination of infected
CD4+ T cells than CD8+ T cells from HLA-B*57/5801
CP at 72 hours post infection. The reverse transcription
process in resting CD4+ T cells has been shown to take
2–3 days [47], therefore, an increase in the elimination
potential over this time frame could limit the seeding of
the latent reservoir. Furthermore, non-productively
infected CD4+ T cells would not be expected to die from
the cytopathic effect of the virus, so even CTL responses
that took 72 hours to mature would be effective at
eliminating these cells.
It should be noted that ES are a heterogeneous popu-

lation, and that not all ES possess previously reported,
protective HLA alleles and, in some cases, have weak or
absent immune responses [6,7,49,50]. Thus, it would be
interesting to determine if ES without protective HLA
types are also able to target non-productively infected
cells.
While only HLA-B*57/5801+ ES were analyzed in this

study, these data have implications for the design of an
effective HIV-1 vaccine. CD8+ T cell vaccines that are
able to elicit a potent response early in infection may
have the potential to reduce the seeding of the latent
reservoir. The CD8+ T cell responses described may
partially explain the low frequency of latently infected
cells that is observed in ES. The small reservoir size may
be due to both the effective elimination of productively
infected CD4+ T cells [3,16,18-22], which would limit
the level of viremia and the subsequent seeding of the
reservoir, and by the elimination of non-productively
infected CD4+ T cells that may be the precursors of the
latent reservoir. These data could also explain why ES
maintain low frequencies of latently infected cells in
chronic infection in spite of ongoing HIV-1 replication
[51-55]; recently infected resting and activated CD4+ T
cells will be eliminated regardless of whether productive
or non-productive infection occurs.

Conclusions
This is the first study to show effective elimination of
non-productively infected CD4+ T cells by unstimulated
primary HIV-1-specific CD8+ T cells from ES. The results
suggest that an early and potent CD8+ T cell immune
response could result in a lower baseline latent reservoir
size as has been seen with a potent CD8+ T cell vaccine in
the SIV model [35]. Latency remains the largest barrier to
the eradication of HIV-1 infection, and understanding the
mechanisms of an optimal CD8+ T cell response can allow
for improved immune based eradication strategies.

Methods
Patients
All individuals provided written informed consent prior to
participating in this study, and all studies were approved
by the Johns Hopkins Institutional Review Board. All ES
maintained undetectable plasma HIV-1 RNA levels for the
duration of study (<50 copies/mL) and are positive for the
HLA-B*57/5801 allele. The median CD4+ T cell count for
the ES used in this study was 857 cells/ul (range 453–
1638 cells/ul), and the median duration of infection was
13 years (range 4–28 years). All CP were on suppressive
antiretroviral therapy for greater than a year at the time of
study. Of the CP used for the study, 9 were positive for
the HLA-B*57/5801 allele and 8 were negative for the
HLA-B*57/5801 allele. Seronegative controls were 6 healthy
laboratory workers (HD, healthy donors).

Isolation of CD4+ and CD8+ T cells
PBMCs were isolated from whole blood by ficoll gradient
centrifugation. CD8+ T cells were isolated by positive
selection using Human CD8 Microbeads following the
manufacturer’s guidelines (Miltenyi Biotec). CD4+ T cell
were subsequently isolated by negative selection using the
Human CD4 T cell isolation kit II following the manufac-
ture’s guidelines (Miltenyi Biotech). All cells were maintained
in non-stimulating media (RPMI + 10% FBS without ex-
ogenous cytokines) for the duration of experimentation
unless otherwise noted.

Infection
An NL4-3 pseudovirus with GFP in the place of Env
(NL4-3 ΔEnv/GFP) was used for all infections, as previously
described [56]. The virus was produced by cotransfection
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of 239 T cells with the proviral construct pNL4-3 ΔEnv/
GFP and either an R5 or X4 Env expression vector to
provide the Env in trans. The env expression vectors have
been routinely used by our lab group [57]. CD4+ T cells
were infected by spinoculation as previously described
[58]. Briefly, CD4+ T cells were isolated and collected in
50 mL conical tubes. The cells were pelleted by centrifu-
gation at 1200 RPM for 10 minutes, and all supernatant
was removed. The cells were then resuspended in the viral
inoculum. Spinoculation was performed by spinning at
1200 × g for 2 hours at room temperature. Cells were then
resuspended at a concentration of 1 × 106 cells/mL and
plated at 1 × 105 cells/well in a 96 well, round bottom plate.
CD4+ T cells were not activated prior to spinoculation.
Rather they were isolated directly from donors and
maintained in non-stimulating media for the duration of
the experiment as previously described [57,59]. CD4+ T
cells were infected with a viral inoculum that routinely
resulted in approximately 15-20% infection after 72 hours
post infection, as measured by GFP expression (1000 ng
p24/1e6 cells). For titration experiments, the level of virus
was titrated by two fold dilutions from 1000 ng p24/106

cells to 62.5 ng p24/106 cells.
For experiments involving efavirenz (EFV) treatment,

EFV was added to CD4+ T cells at the time of spinoculation
and maintained in the culture for the duration of the
experiment at 10 μM which is greater than the IC99.
Treatment of CD4+ T cells with EFV prevented any ex-
pression of GFP after 72 hours of infection in any of the
treated wells (data not shown). An aliquot of uninfected
CD4+ T cells was kept as a negative control.
For experiments involving maraviroc (MVC), ADM3100

(ADM) and T20, drug was added to CD4+ T cells at the
time of spinoculation and maintained in the culture for
the duration of the experiment at 10 μM, 10 μM and
25 nM, respectively, which is greater than the IC99.
AT-2 inactivated virus was produced as previously de-

scribed [45]. Briefly, NL4-3 ΔEnv/GFP virus was treated
with 300 μM AT-2 (Sigma) for 1 hour at 37°C. After
incubation, virus was filtered using Amicon Ultra 0.5 mL
filtration tubes (Millipore). Virus was then kept on ice
until use in the CD8+ suppression assay.

CD8+ T Cell elimination of infected cells assay
The CD8+ T cell elimination assay was modified from a
previously reported suppression assay [21,22]. We mea-
sured the reduction in the number of cells expressing
Gag in the presence of CD8+ T cells. Because we used a
single cycle virus, this reduction was most likely due to
killing of infected cells although we do not directly prove
this in this study. To prepare Gag-stimulated CD8+ T
cells, PBMCs from patients or HD were isolated one
week prior to the execution of the suppression assay
(day −7). PBMCs were stimulated with a mixture of
overlapping Gag peptides that spanned the length of Gag
at a total concentration of 5 μg/mL and IL-2 (2 units/mL).
After one week, Gag-stimulated, CD8+ effectors were
isolated by positive selection using CD8 microbeads
(Miltenyi Biotech). A second blood draw was obtained
from each patient or HD on the same day, and un-
stimulated CD8+ T cell effectors and autologous CD4+

T cell targets were isolated directed ex vivo, by positive
and negative selection, respectively. CD8+ T cells were
added to infected CD4+ T cell targets immediately after
spinoculation. The infected CD4+ targets, with or without
EFV treatment, and either Gag-stimulated or unstimulated
CD8 effectors were co-cultured in a 96 well plate at
varying effector to target (E:T) ratios. The number of
CD4+ T cells per well remained constant (100,000 cells
per well), and the number of CD8+ T cells was varied.
The cells were cultured in a final volume of 200 μL of
non-stimulating media. CD8+ T cells were serially
diluted from a 1:1 effector to target (E:T) ratio to a 1:8
E:T ratio by two-fold dilutions. Wells with only CD4+

T cells (targets alone) were used as positive controls
for normalization.
Elimination of infected cells was measured at 6, 18

and 72 hours after infection to determine the kinetics of
the response. To measure infection, cells were stained
with anti-CD3 Pac Blue (Becton Dickinson), anti-CD8
APC-H7 (Becton Dickinson), and anti-Gag PE (Beckmen
Colter, coulter clone kc57). For intracellular staining,
the Cytofix/Cytoperm was solution was used following
the manufacturers guidelines (Becton Dickinson). The
normalized percent elimination of infected cells was
calculated as follows: (Percent Gag+ cells in wells with
Targets alone – Percent of CD4+ T cells that are Gag+ in
wells with Targets and Effectors) / (Percent Gag+ cells in
wells with Targets alone) × 100, as described previously [41].
For the titration experiments, CD4+ T cells were

infected with various viral inoculums, and cultured with
our without unstimulated CD8+ T cells at a 1:1 E:T ratios.
Cultures without CD8+ effectors served as the positive
control for normalization.
For a subset of ES, cells were also stained with a cocktail

of anti-HLA-DR APC, anti-CD25 APC, and anti-CD69
APC (Becton Dickinson). CD4+ Tcell targets that expressed
any one of these markers were designated activated
CD4+ T cells, those that were negative for all three
markers were designated as resting CD4+ T cells, as gated
using the FACS Diva software. The percent infection of
unfractionated CD4+ T cells (all CD3+/CD8- cells), resting
CD4+ T cells and activated CD4+ T cells w calculated, and
the normalized percent elimination of infected cells of
each subset was calculated.
All cytometric analyses were performed using a FACS

Canto II (Becton Dickinson) and analyzed using the
FACS Diva software.
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Statistical analysis
For the analysis of the significance of the difference
between populations, the Mann–Whitney nonparametric
T test was used. For pair-wise comparison of untreated
vs. EFV-treated cells, a paired Student’s T test was used.
P values were calculated, and a P value of less than 0.05
was considered significant.

Additional file

Additional file 1: Percent of Gag and GFP positive resting and
activated cells present at 18 and 72 hours post infection in the
presence or absence of EFV.
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