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Abstract
Apoptosis, or programmed cell death, is a key event in biologic homeostasis but is also involved in
the pathogenesis of many human diseases including human immunodeficiency virus (HIV) infection.
Although multiple mechanisms contribute to the gradual T cell decline that occurs in HIV-infected
patients, programmed cell death of uninfected bystander T lymphocytes, including CD4+ and
CD8+ T cells, is an important event leading to immunodeficiency. The HIV envelope glycoproteins
(Env) play a crucial role in transducing this apoptotic signal after binding to its receptors, the CD4
molecule and a coreceptor, essentially CCR5 and CXCR4. Depending on Env presentation, the
receptor involved and the complexity of target cell contact, apoptosis induction is related to death
receptor and/or mitochondria-dependent pathways. This review summarizes current knowledge of
Env-mediated cell death leading to T cell depletion and clinical complications and covers the
sometimes conflicting studies that address the possible mechanisms of T cell death.

Introduction
HIV infection usually leads to progressive decline in func-
tionality and number of CD4+ T lymphocytes, resulting in
AIDS development [1]. Despite intensive studies, several
crucial questions remain to be addressed about the mech-
anisms through which HIV infection induces T cell death
and this subject is one of the most controversial issues in
AIDS research.

First, T cell loss could be due to direct destruction by the
virus. HIV infection results in high T cell activation and
turnover, and accelerates both production and destruc-
tion of CD4+ T cells [1,2]. Using a mathematical model,
Mohri and collaborators have demonstrated that T cell
depletion observed in HIV-1 infection was due to an

increased turnover of T lymphocytes rather than a
decrease in cellular production [3], but the dynamics of T
cells in HIV-infected patients remain controversial [4].

A strong immune response is a priori beneficial in control-
ling viral replication. However, independently of viral
load, a chronic, heightened activation of the immune sys-
tem may contribute in a direct manner to progressive
CD4+ T cell depletion [4,5]. Two observations corrobo-
rate this hypothesis. First, sooty mangabeys, the natural
host of simian immunodeficiency virus (SIV), which do
not develop AIDS, support high levels of viral replication
but fail to exhibit a clear increase in immune activation
[6]. In contrast, SIV experimentally transferred to rhesus
macaques induces a dramatic increase in immune
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activation and rapid progression to AIDS and death. In the
same way, HIV-1 and HIV-2-infected patients with similar
degree of CD4+ T cell depletion show large differences in
viral load [7]. CD4+ T cell loss during the chronic phase
of HIV/SIV infection is thus more directly related to the
overall immune response than the rate of virus replica-
tion. Immune activation could drive the progression of
HIV disease by destabilizing or progressively changing the
homeostatic states of resting T cell populations.

Second, T cell apoptosis has been proposed as early as
1991 as another mechanism responsible for T cell deple-
tion in patients infected with HIV-1 [8,9] and an extensive
body of literature since then has supported this hypo-
thesis. In addition, there is a correlation between the
extent of apoptosis and disease progression [10,11] and
highly active antiretroviral therapy (HAART) is associated
with a lower level of CD4+ T cell apoptosis in HIV-1-
infected patients [12-14].

In HIV-infected persons, both infected and uninfected
cells undergo accelerated apoptosis, in vitro and in vivo.
Several mechanisms have been proposed to explain these
results: (i) direct role of HIV-specific proteins, (ii) activa-
tion-induced cell death (AICD), (iii) direct infection of T
lymphocytes, (iv) autologous cell-mediated killing of
uninfected T cells and (v) dysregulation of cytokine/
chemokine production [15]. However, HIV-1-induced
apoptosis in bystander uninfected immune cells is likely
the key to the depletion of T lymphocytes observed in
HIV-1-infected patients since the degree of cell loss largely
exceeds the number of infected cells. Furthermore, the
vaste majority of T cells undergoing apoptosis in periph-
eral blood and lymph nodes of HIV patients are unin-
fected [16,17]. Using several animal models, such as
rhesus macaques infected by SIV or highly pathogenic
SIV/HIV chimeric viruses and human PBL-transplanted
nonobese diabetic (NOD)-severe combined immunodefi-
cient (SCID) mice, massive apoptosis was predominantly
observed in uninfected CD4+ T cells present in lymph
nodes, thymus or spleen [18-20].

Several HIV-1 proteins, such as HIV envelope glycopro-
teins (Env), Tat, Vpr, Nef, Vpu and the protease can induce
T cell apoptosis. No one has a full grasp of the real impor-
tance of this process in vivo, but cumulative data demon-
strate a major role of Env in cell death of uninfected
lymphocytes [21-24].

These two global mechanisms leading to T cell loss in HIV
disease are not mutually exclusive. Over the past several
years, many data were obtained on signaling induced after
Env binding to its receptors leading to T cell apoptosis.
The purpose of this review is thus to summarize recent
information on apoptotic pathways shown to be activated

by Env in uninfected cells and to highlight the pathologi-
cal consequences of this cell death. Novel avenues for clin-
ical managements of AIDS based on this research are also
discussed.

HIV envelope glycoproteins as inducers of 
apoptosis
The mature HIV-1 envelope glycoproteins are composed
of gp120, the exterior envelope glycoprotein, and gp41,
the transmembrane glycoprotein assembled as trimer by
non covalent interactions. Obviously, the viral envelope
can be considered as an extracellular ligand. Conse-
quently, binding of HIV-1 Env gp120/gp41 to its receptors
constitutes the primary interface between viruses and T
cells and this event is likely able to modulate T cell
signaling.

In most cases, to enter a target cell, HIV-1 must bind two
molecules on the surface of target cells. gp120 first inter-
acts with CD4, which triggers conformational changes
leading to increased exposure of the gp120 V3 loop that is
then able to bind to several coreceptors that determine the
tropism of the virus for particular cell types [25]. CCR5
and CXCR4 are the main HIV coreceptors [26-28] but sev-
eral other members of the chemokine receptor family,
such as CCR1, CCR2b, CCR3, CCR4, CCR8, CX3CR1,
BOB/GPR15, Bonzo/CXCR6, GPR1, US28 and APJ can
also be used as coreceptors for viral entry [29-34]. These
events trigger the formation of a coiled-coil structure in
the gp41 ectodomain that places the hydrophobic ami-
noterminal region of gp41 in close proximity to the cellu-
lar membrane, thereby inducing cell fusion [35].

Transmissible, macrophage-tropic HIV-1 strains, named
R5, use CCR5 as a coreceptor. As the disease progresses, in
many individuals, viruses emerge that have T-tropic char-
acteristics. These strains are able to use CXCR4 alone or in
combination with other coreceptors. The correlation
between the clinical outcome and extended viral tropism
is still a subject of debate. Indeed, in most cases, disease
progression does not seem to correlate directly with the
emergence of variants that can use multiple coreceptors
[36] but viral adaptation has also been described to follow
in vivo HIV-1 disease progression [37]. Evolution of core-
ceptor use is a continuous process that may lead to change
in the way coreceptors are used, with the potential of alter-
ing signaling at that receptor and sensitivity to inhibition
by chemokines, neutralizing antibodies or drugs that tar-
get coreceptor binding. HIV-1 Env interaction with each of
these receptors (CD4 and a coreceptor) can thus dictate
the molecular mechanisms transducing apoptosis in
uninfected T cells.

Depending on Env presentation and on the complexity of
target cell contact, the mechanisms leading to cell death
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may also be different. Indeed, soluble Env, secreted from
infected cells, Env expressed on virions or at the cell sur-
face of infected cells, are able to induce apoptosis of unin-
fected T cells. Soluble Env resulting from shedding of the
surfaces of viral particles or infected cells can be consid-
ered as a ligand of CD4 and coreceptor molecules and acts
as a signaling molecule through these receptors. Nonin-
fectious virions provide a powerful tool to dissect mecha-
nisms activated through HIV particles without viral
replication. Finally, infected cells expressing Env at their
surface can interact with uninfected T cells presenting
CD4 and coreceptor molecules and can elicit several
events, (i) an apoptotic signaling through one of these

receptors, (ii) an hemifusion event leading to target cell
death or (iii) syncytium formation (Fig. 1).

It is worth noting that apoptosis is seen in both CD4+ and
CD8+ lymphocytes from peripheral blood [10,11,38,39]
and correlates with disease progression.

Furthermore, Env of HIV-2 (gp105/gp36) generally binds
to the same receptors as HIV-1, even if several primary
HIV-2 strains can infect CCR5+ or CXCR4+ cell lines with-
out the requirement of CD4 interaction in vitro [40].
However, T cell decline and clinical progression to AIDS
occur at a slower rate [41,42]. HIV-2 Env has much more

Schematic diagram of Env-induced CD4+ T cell apoptosisFigure 1
Schematic diagram of Env-induced CD4+ T cell apoptosis
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marked inhibitory properties on TCR-mediated lympho-
proliferative responses that HIV-1 Env does, without over-
inducing apoptosis, explaining the model of "attenuated
disease" [43].

Env-mediated apoptosis of bystander CD4+ T 
cells
Apoptosis of single cells
Signaling through CD4
The CD4 molecule is a transmembrane glycoprotein
which is essential for the helper functions of mammalian
T cells since it acts as a receptor for major histocompatibil-
ity complex (MHC) class II. In lymphocytes, apoptosis is
an important physiological mechanism that regulates the
capacity of immune responses to maintain tolerance to
self-antigens. Two apoptotic pathways have been
described as operative in T lymphocytes: activation-
induced and spontaneous or passive cell death. AICD
occurs as a result of repeated antigenic stimulation and is
mediated by the interaction of the cell death receptor Fas
and its ligand (Fas-L), expressed either on the same cells
or on neighbouring activated T cells. The role of this Fas/
FasL apoptotic pathway in HIV disease has been previ-
ously reviewed by D. Kaplan and S. Sieg [44]. The propor-
tion of Fas-expressing T cells in patients increases with
disease progression, and peripheral blood CD4+ T lym-
phocytes from HIV-infected individuals undergo apopto-
sis in response to stimulation through Fas antigen at a
much higher frequency than from uninfected controls
[45-53]. In the same way, high levels of Fas-susceptibility
found in peripheral CD4+ T cells before HAART are signif-
icantly reduced after treatment, coinciding with a decrease
in viral load and an increase in peripheral CD4+ T lym-
phocytes counts.

Cross-ligation of CD4 molecules prior to T cell receptor
(TCR) stimulation triggers an up-regulation of Fas on
purified T cells and expression of FasL upon antigen-,
mitogen- and CD3 stimulation, rendering the T cells sus-
ceptible to Fas-mediated apoptosis [54]. It is quite likely
that CD4+ uninfected T cells from HIV-infected patients
are continuously undergoing CD4 cross-linking through
interaction with virions or via Env expressed at the surface
of infected cells. This phenomenon occurs essentially in
lymphoid tissue which is a major reservoir of viral infec-
tion in HIV disease and a primary site of antigen presenta-
tion and lymphocyte activation. Indeed, apoptosis is
predominantly seen in uninfected bystander cells present
in HIV-1 infected individual lymph nodes [17]. When
these CD4-cross-linked uninfected T cells encounter anti-
gen-presenting cells in the local environment, they receive
stimulatory signals through the TCR, leading to increased
apoptosis [54,55]. This supports the concept that circulat-
ing T lymphocytes from HIV-infected patients are in an
enhanced state of immune activation, which, in fact, may

translate into the observed increased levels of ex vivo
spontaneous T cell apoptosis, activation-induced T cell
apoptosis and T cell susceptibility to Fas-dependent apop-
tosis [13,52,56-59].

Another mechanism for depletion of bystander T cells,
observed in the lymph nodes of AIDS patients, was sug-
gested when it was discovered that about one-half of the
resting CD4+ lymphocytes that were pre-exposed to HIV
(but not infected) were induced into apoptosis following
signaling through receptors necessary for homing to
lymph nodes [60].

However, the possible involvement of the Fas/FasL path-
way in activation-induced cell death of T lymphocytes
from HIV-1-infected persons has not produced a clear
consensus [61-64]. These discrepancies may reflect differ-
ent stages of disease, level of peripheral blood T cell acti-
vation or mode of T cell stimulation (e.g., superantigen or
anti-CD3-induced T cell apoptosis).

In addition, tumor necrosis factor (TNF) [58,65,66] and
TRAIL (DR4 and DR5) receptors [67,68] may also be
involved in deregulated apoptosis during HIV-1 infection.

Besides the fact that CD4 is engaged in T cell activation,
direct cross-linking of CD4/HIV gp120 complexes by anti-
bodies can initiate T cell apoptosis using in vitro cellular
experiments from transgenic mice expressing human CD4
at the surface of lymphocytes [69,70].

Identification, in 1996, of G-protein-coupled receptors as
HIV coreceptors, has brought a higher level of complexity
in signals that can be triggered after HIV-1 Env binding to
its target cell. Thus, consequences of Env binding to T cells
are multiple, engaging at the same time CD4 and a core-
ceptor molecule.

Signaling through the coreceptors
The coreceptors are chemokine receptors that belong to
the large family of 7-transmembrane domain receptors
coupled to heterotrimeric Gi proteins. The misappropria-
tion of chemokine receptor function by HIV Env has
important consequences on cell homeostasis. Compared
to the natural chemokines, X4 and R5 HIV Env have over-
lapping but distinct binding sites on chemokine receptors
[71,72]. They are thus able, after interaction with their
respective receptors, to transduce some functional
responses such as proliferation, differentiation, chemo-
taxis and proinflammatory cytokine secretion [73,74] in
addition to apoptosis. However, several studies indicate
that cell signaling is not needed for HIV-1 Env fusion with
the plasma membrane of the target cell [75-78].
Page 4 of 12
(page number not for citation purposes)



Retrovirology 2004, 1 http://www.retrovirology.com/content/1/1/12
The main difference between HIV-1 R5 and X4 strains
resides in the Env protein sequence, which leads to CCR5
or CXCR4 coreceptor usage, respectively, independently
from their common interaction with CD4. CXCR4 and
CCR5 stimulation by the corresponding HIV-1 Envs
induce several common signaling pathways such as
phosphorylation of the tyrosine kinase Pyk2 [79],
increased intracellular Ca2+ [73,80] and c-Jun N-terminal
kinase (JNK) activation [81,82] but differ in their ability
to activate the extracellular signal-regulated kinase (ERK)
pathway [83]. In the same way, HIV-1 R5 and X4 strains
induce differential mechanisms in mediating uninfected T
cell death, which could explain the physiopathology of
HIV-1 infection.

There is now evidence that Env, either in a soluble or
membrane-bound form, mediates death of uninfected
bystander CD4+ T cells [17,22,66,84,85]. Death of unin-
fected T cells has been shown to occur in lymphoid tissue
from HIV-infected patients when contacted by an HIV-
infected cell [17]. Soluble gp120 produced within the
infected lymphoid tissue could also directly kill or sensi-
tize T cell to subsequent death. Indeed, gp120 at 120–960
ng/mL may exist in lymph nodes of HIV-infected individ-
uals [86-88] and 500 ng/mL of soluble gp120 is sufficient
to mediate significant T cell death [89].

CXCR4
CXCR4 is a receptor for the chemokine stromal cell-
derived factor-1 (SDF-1) [28,90] and is widely expressed
in various hematopoietic cells. SDF-1/CXCR4 regulates
pre-B-cell proliferation, myeolopoiesis, cerebellar devel-
opment and cardiogenesis [91-93]. Furthermore, upregu-
lation of CXCR4 that occurs in T cells from lymphoid
tissue in HIV-infected patients may favor X4 Env/CXCR4
interactions.

The first experiments indicating that Env-induced death
program could be independent of CD4 signaling, and
thus coreceptor dependent, were done with human T cell
lines in which the cytoplasmic part of CD4 was missing.
Indeed, infectious X4 isolates of HIV-1 induce apoptosis
of different T cell lines lacking the CD4 cytoplasmic
domain and thus unable to transduce a signal through
CD4 [94,95]. In parallel, L. Moutouh and collaborators
demonstrated that p56lck signaling is dispensable for HIV-
1-mediated apoptosis [63]. Similarly, the capability of
SDF-1 and CXCR4 antagonists to block Env-induced cell
death underlines the role of CXCR4 in this death signaling
[61,96,97].

As early as 1998, a consensus has emerged that CXCR4
triggers a death signal in CD4+ T cells after interaction
with Env, independently of G-protein signaling [61,98-
102]. Using a human embryonic kidney 293(HEK.293)

cell line stably cotransfected with CXCR4 and a mutated
form of CD4 lacking its cytoplasmic domain, T cell lines
and primary umbilical cord blood CD4+ T lymphocytes,
we demonstrated that the apoptotic signaling induced in
these target cells after contact with cells expressing X4 Env
is specifically triggered by CXCR4, dependent of the mito-
chondrial intrinsic pathway but does not involve activa-
tion of the stress- and apoptosis-related mitogen-activated
protein kinases (MAPKs) p38 and JNK [96,98,103]. Nota-
bly, binding of HIV-1 Env to CXCR4 induces mitochon-
drial transmembrane depolarization, cytochrome c
release from the mitochondria to the cytosol and activa-
tion of the caspases-9 and -3. Furthermore, Env-induced
apoptosis through CXCR4 is Fas independent
[61,64,100,101,103,104]. However, there is some contro-
versy as to the conformation of gp120 needed to induce
cell death. In a majority of cellular models, Env has to be
expressed on cells to trigger T cell apoptosis but recom-
binant gp120 alone or cross-linked with anti-gp120 anti-
bodies was also shown to trigger CD4+ T cell death
[61,105].

Direct implication of caspases in Env-mediated cell death
of CXCR4+ cells is still a subject of debate. Berndt and col-
laborators described no involvement of known caspases
in cross-linked recombinant gp120- and anti-CXCR4-
induced apoptosis of human peripheral blood lym-
phocytes [61] and Vlahakis and collaborators reported
that CXCR4-dependent cell death is caspase independent
on the basis of caspases inhibitors [89]. However, caspase-
3 is cleaved in primary T lymphocytes [103,105] and
endothelial cells [106,107] following binding of HIV-1
Env.

The manner in which Env is presented, the cell population
analyzed and the nature of the receptor directly involved
in this cell death could be responsible for the discrepan-
cies between these reports. However, multiple experi-
ments, using different cell lines, human primary T cells
and human lymphoid cultures ex vivo [108] support the
view that Env interaction with CXCR4 on bystander CD4+
T cells triggers apoptosis. These results are consistent with
observations made from AIDS patients and explain the
high CD4+ T cell depletion that occurs after X4 isolate
emergence.

CCR5
Only about 15 to 30% of the CD4+ T lymphocytes express
detectable levels of CCR5 on the cell surface in contrast to
CXCR4 which is expressed on nearly all of these T cells
[109,110]. This explains, at least in part, that X4 strains
exert a profound cytopathic effect on a much wider range
of target cells via their particular capacity to induce
bystander apoptosis. However, even if bystander apopto-
sis is an important characteristic of X4 HIV-1 strains,
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mediated by binding of X4 Env to CXCR4 on CD4+ T lym-
phocytes, R5 Env binding to CCR5 expressed on unin-
fected resting primary T cells and human vascular
endothelial cells has also been shown to trigger apoptosis
[111,112]. Stimulation of CCR5 by R5 Env or anti-CCR5
antibody leads to FasL up-regulation, inducing caspase-8
activation in resting primary CD4+ T cells [111]. Yao and
collaborators also demonstrated that R5 and X4 Env
expressed on simian HIV virus-like particles induce apop-
tosis through their respective coreceptors expressed on
human osteosarcoma (HOS) cells [113]. However, apop-
tosis of bystander CD4+ T cells observed in human lym-
phoid tissues ex vivo after infection with R5 viruses was
shown to be only a minor mechanism [108].

Apoptosis after cell-to-cell fusion
HIV-1 Env (gp120/gp41) expressed at the surface of
infected cells drives cell-to-cell fusion with adjacent unin-
fected CD4+ T cells [21,22,114,115], which results in for-
mation of multinucleated syncytia [114,116].
Hemifusion events as well as syncytium formation have
been shown to trigger cell apoptosis and thus to partici-
pate to the global loss of CD4+ T cells during AIDS.

Role of gp41-mediated hemifusion-like events
Destruction of primary CD4+ T cells can occur by cell-cell
interaction in HIV-1 infection in vitro [117]. Furthermore,
agents interfering with cell-to-cell fusion, such as the pep-
tide T20 which abolishes a correct gp41 folding after
gp120 binding to its receptor molecules and insertion of
the gp41 fusion peptide into cell membrane [118], pre-
vent cell death and T cell depletion [117]. Blanco and col-
laborators recently demonstrated that Env-induced cell
death of single CD4+ T cells requires both gp120 and
gp41 functions [119].

These data indicate that besides the role of gp120, gp41
could actively participate in the molecular events leading
to Env-induced cell death.

Apoptosis of syncytia
Syncytia are not stable over an extended time-period
[114,116] and are not detectable in infected individuals
except in brain [120] and tonsils [121] but can amplify the
global apoptotic signaling [122].

Syncytium formation leads to apoptosis mediated by the
intrinsic mitochondrial pathway [123] and involves a pre-
cise sequence of events: (i) activation of the mammalian
target of rapamycin mTOR, (ii) mammalian target of
rapamycin (mTOR)-mediated phosphorylation of p53 on
serine 15, (iii) p53-dependent upregulation of Bax expres-
sion, (iv) Bax-mediated permeabilization of mitochon-
drial membranes with reduction of the mitochondrial
transmembrane potential and release of proapoptotic

mitochondrial proteins such as apoptosis-inducing factor
AIF and cytochrome c and (v) activation of caspase-3 and
nuclear chromatin condensation [124,125].

Env-mediated apoptosis of CD8+ T lymphocytes
HIV infection is characterized by a persistent immune
activation and a concomitant decline in both CD4+ and
CD8+ naïve lymphocytes in the early stages of the disease
[126]. In the later stages, both CD4+ and CD8+ memory
T cells decline at similar rates. Notably, apoptosis is seen
in peripheral blood CD4+ and CD8+ T lymphocytes of
HIV-infected patients [10,11,38,39] as well as in CD4+
and CD8+ T cells present in lymph nodes of HIV-infected
persons [127]. The degree of apoptosis observed in these
cells is significantly higher in infected patients than in
uninfected individuals [11] and CD8+ as well as CD4+
peripheral blood T cells from HIV-infected persons are
susceptible to Fas- and activation-induced apoptosis [58].
Furthermore, this cell death correlates with disease pro-
gression and severity [49,52]. These data suggest that sur-
vival and differentiation of HIV-specific CD8+ T cells may
be compromised by Fas apoptosis induced by FasL-
expressing HIV-infected cells [128]. In addition to direct
CD8+ T cell death mediated by the death receptor Fas,
CD4 cross-linking by Env interaction in uninfected CD4+
lymphocytes prior to TCR stimulation leads to the gener-
ation of FasL-expressing CD4+ T cells that can trigger
CD8+ T cell apoptosis [54].

In addition to Fas sensitivity, CD8+ T lymphocytes from
HIV-infected patients are susceptible to proapoptotic sig-
naling through both tumor necrosis factor receptor TNFRI
and TNFRII, and this is associated with expression of cas-
pase-8 and -3 and lack of physiological protection by Bcl-
2 [67]. IL-15 induces both Bcl-2 and Bcl-xL expression in
HIV-specific and total CD8+ T cells, and this phenome-
non is correlated with apoptosis inhibition and increased
cell survival. Thus, reduced Bcl-2 and Bcl-xL expression
found in HIV-specific CD8+ T cells may play an important
role in the increased sensitivity to apoptosis [129]. Fur-
thermore, Vlahakis and collaborators demonstrated that
CXCR4 activation by X4 Env induces a caspase-independ-
ent death of uninfected CD8+ T lymphocytes [89]. One
mechanism by which CD8+ T cells undergo apoptosis in
HIV disease is dependent upon macrophages [130]. The
data indicate that ligation of CXCR4 increased membrane
bound TNF on macrophages and TNFRII on CD8+ T cells,
and that interaction between TNF and TNFRII triggers
CD8+ lymphocyte apoptosis. HIV-1 X4 Env expressed at
the surface of conformationally authentic noninfectious
virions is also able to trigger apoptosis of CD8+ T lym-
phocytes [131]. Inhibition of CD4+ and CD8+ T cell
apoptosis was observed in HIV patients undergoing
potent antiretroviral therapy. Recently, Grelli and collab-
orators demonstrated that inhibition of apoptotic CD8+ T
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cells rather than CD4+ T cells are correlated with CD4+ T
cell increase during therapy [132], underlying the role of
CD8+ T cell apoptosis in disease progression.

CD8+ T cells are known to be essential in controlling HIV
infection. Apoptosis of either HIV-specific or total CD8+ T
lymphocytes can thus contribute to impair the global
immune response against HIV. In addition to HAART, IL-
15 could be used as an immunorestorative agent to boost
immunity against HIV and to inhibit HIV-induced apop-
tosis of T cells in HIV patients [133-135].

Complications of HIV infection due to Env-
induced apoptosis
Besides pathological complications due to opportunistic
pathogens, several disorders are direct consequences of
HIV infection. Here are described complications that
involve Env-mediated apoptosis. Indeed, different in vivo
cell types are able to express a coreceptor and/or CD4 and
are thus susceptible to Env-mediated apoptosis.

HIV-1-mediated neurotoxicity
HIV-1 Env has been proposed as the major etiologic agent
for neuronal damage, mediating both direct and indirect
effects on the central nervous system (CNS). Indeed,
gp120 has been revealed in the central nervous system of
AIDS patients [136] and in the brain of patients with HIV
encephalitis and dementia [137]. There is also evidence
that gp120 can cross the blood-brain barrier [138]. Fur-
thermore, chemokine receptors have been identified in
macrophages/microglia, astrocytes and neurones [139].

HIV-1-associated dementia (HAD) is a common compli-
cation of the viral infection late stages affecting nearly
20% and 50% of infected adults and children respectively.
In addition to indirect neuronal injury triggered by neuro-
toxic molecules released from HIV-infected or -activated
macrophages and microglia [140-144], HIV Env directly
triggers apoptosis of both primary rodent and human
neurons [81,145-150] and astrocytes [151-153] and is
probably a cause of CNS injury in AIDS [81,154-158]
even if neuronal cells are not productively infected by
HIV-1. A direct role of HIV-1 coreceptors is also possible
since association between HIV-1 gp120 and CCR5 or
CXCR4 expressed in human neurons is CD4 independent
[102,159,160].

Two major features now emerge from AIDS neurotoxicity
studies. First, chemokine receptors are involved in apop-
tosis of neuronal cells, and second, HIV-1 Env is the major
determinant of the HIV-dependent neurodegenerative
mechanisms [150,154,161]. Understanding the precise
role of CXCR4 and other chemokine receptors in HIV-1
neuropathogenesis will help to advance the development
of new therapeutic strategies for the prevention and treat-

ment of neurologic disorders associated with HIV-1
infection.

Other complications of HIV-1 infection
HIV-associated cardiomyopathy
Annual incidence of HIV-associated cardiomyopathy is
estimated to be 15.9 cases per 1,000 asymptomatic Italian
HIV-1-positive patients [162] and leads to a high cardio-
vascular morbidity and mortality in young and middle-
aged adults. Infected hearts show a strong expression of
gp120 without productive infection of cardiomyocytes.
Twu and collaborators demonstrated in vitro that gp120
induces cardiomyocyte apoptosis by a mitochondrion-
controlled pathway and in vivo that death receptor lig-
ands from macrophages are a major cause of apoptosis
and that the apoptotic signaling may occur through chem-
okine receptors [163].

HIV-associated nephropathy
HIV-associated nephropathy (HIVAN) is accompanied by
tubular cell proliferation, apoptosis and microcystic dila-
tation. Through murine and human studies, it is now clear
that HIVAN is caused by a direct effect of HIV-1 infection
of renal cells and that the virus actively replicates in renal
cells [164,165]. In particular, gp120 induces apoptosis of
tubular epithelial cell through p38-MAPK phosphoryla-
tion [166]. Furthermore, dysfunction and/or damage of
mesangial cells that are susceptible to HIV/SIV strains
using GPR1 as coreceptor is thought to be involved in the
development of HIV-associated HIVAN [34]. Its remains
to investigate whether the interaction of these cells with
specific HIV-1 strains through GPR1 plays a significant
role in the development of HIVAN.

HIV-mediated hepatocyte death
Liver dysfunction causes significant morbidity among
HIV-infected individuals. End-stage liver disease is the
most frequent cause of death among HIV-infected hospi-
talized patients [167]. Although the cause of liver injury in
HIV-infected individuals is multifactorial, Vlahakis and
collaborators established that HIV-1 X4 Env and the entire
virion induce apoptosis of human hepatocytes via CXCR4
[168].

Conclusion
Apoptosis of uninfected CD4+ T lymphocytes is closely
linked to activation of the immune system and change in
coreceptor usage. One hypothesis might be that, at the
first stages of the disease, Env binds to the CD4 and CCR5
molecules, triggering chronic and continuous activation
of the immune system that induces a Fas-dependent
CD4+ T cell apoptosis upon mobilization of the T cell
receptor and antigen. During the progression toward
AIDS, X4 strains emerge and their higher pathogenicity
may derive from the fact that CXCR4 is able to activate
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either directly or indirectly a Fas-independent apoptotic
signaling pathway, accelerating the immune destruction
observed at late stages of AIDS. Furthermore, CXCR4 is
widely expressed on immune cells, still increasing the
cytopathogenicity of X4 strains. Treatment of HIV-
infected patients with protease inhibitors leads to a
decrease in CD4+ T cell apoptosis, inducing an increase in
CD4+ T cell number and a decrease in viral loads, result-
ing in clinical improvement. Therapies that block or
decrease bystander death could thus have significant clin-
ical benefit. Several interleukins, IL-2, IL-7 and IL-15
could also be used for therapeutic intervention. IL-15, in
particular, because of its anti-apoptotic properties and its
role in enhancing survival and function of CD8+ T cells,
can be an immunorestorative agent in HIV treatment.
Finally, as X4 strains are the most pathogenic ones, induc-
ing massive apoptosis of bystander T cells, CXCR4 antag-
onists would improve clinical AIDS chemotherapy in
suppressing Env binding to CXCR4 and X4 HIV-1 entry
into target cells. In the same way, Env-binding agents such
as plant lectins and glycopeptide antibiotics seem also
worthy of further preclinical development. Novel
approaches focusing on apoptosis of bystander T cells are
required to maintain the homeostatic states of the
immune cell populations.
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